ar X iv : h ep - l at / 0 00 20 21 v 2 1 7 A ug 2 00 0 SLAC – PUB – 8353 January 25 , 2000 CORE and the Haldane Conjecture

نویسنده

  • Marvin Weinstein
چکیده

The Contractor Renormalization group formalism (CORE) is a real-space renormalization group method which is the Hamiltonian analogue of the Wilson exact renormalization group equations. In an earlier paper[3] I showed that the Contractor Renormalization group (CORE) method could be used to map a theory of free quarks, and quarks interacting with gluons, into a generalized frustrated Heisenberg antiferromagnet (HAF) and proposed using CORE methods to study these theories. Since generalizations of HAF’s exhibit all sorts of subtle behavior which, from a continuum point of view, are related to topological properties of the theory, it is important to know that CORE can be used to extract this physics. In this paper I show that despite the folklore which asserts that all real-space renormalization group schemes are necessarily inaccurate, simple Contractor Renormalization group (CORE) computations can give highly accurate results even if one only keeps a small number of states per block and a few terms in the cluster expansion. In addition I argue that even very simple CORE computations give a much better qualitative understanding of the physics than naive renormalization group methods. In particular I show that the simplest CORE computation yields a first principles understanding of how the famous Haldane conjecture works for the case of the spin-1/2 and spin-1 HAF. Submitted to Physical Review D. ∗Work supported in part by Department of Energy contracts DE–AC03–76SF00515 and DE– AC02–76ER03069

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : h ep - p h / 00 11 16 3 v 3 2 8 N ov 2 00 0 SLAC - PUB - 8707 hep - ph / 0011163 November 2000 Challenges in

We give an personal overview of some of the unsolved problems related to hyperon decays. We cover nonleptonic decays, radiative decays and magnetic moments. Some of the theoretical issues are also touched upon.

متن کامل

ar X iv : h ep - l at / 0 20 80 60 v 1 2 7 A ug 2 00 2 1 Large N reduction with overlap fermions

We revisit quenched reduction with fermions and explain how some old problems can be avoided using the overlap Dirac operator.

متن کامل

ar X iv : h ep - p h / 00 02 04 1 v 2 3 1 M ay 2 00 0 SLAC - PUB - 8351 February , 2000 Theoretical Summary Lecture for EPS HEP 99

This is the proceedings article for the concluding lecture of the 1999 High Energy Physics Conference of the European Physical Society. In this article, I review a number of topics that were highlighted at the meeting and have more general importance in high energy physics. The major topics discussed are (1) precision electroweak physics, (2) CP violation, (3) new directions in QCD, (4) supersy...

متن کامل

ar X iv : h ep - l at / 0 01 20 10 v 1 7 D ec 2 00 0 1 The Vacuum Polarization : Power Corrections beyond OPE ? ∗

X iv :h ep -l at /0 01 20 10 v1 7 D ec 2 00 0 1 The Vacuum Polarization: Power Corrections beyond OPE ? ∗ M. Göckeler, R. Horsley, W. Kürzinger, V. Linke, D. Pleiter, P. E. L. Rakow and G. Schierholz Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany Deutsches Elektronen-Synchrotron DESY & NIC, D-15735 Zeuthen, Germany Institut für Physik, Humboldt-Universität...

متن کامل

ar X iv : h ep - p h / 00 02 04 1 v 1 3 F eb 2 00 0 SLAC - PUB - 8351 February , 2000 Theoretical Summary Lecture for EPS HEP 99

This is the proceedings article for the concluding lecture of the 1999 High Energy Physics Conference of the European Physical Society. In this article, I review a number of topics that were highlighted at the meeting and have more general importance in high energy physics. The major topics discussed are (1) precision electroweak physics, (2) CP violation, (3) new directions in QCD, (4) supersy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000